Balancing Score Adjusted Targeted Minimum Loss-based Estimation.
نویسندگان
چکیده
Adjusting for a balancing score is sufficient for bias reduction when estimating causal effects including the average treatment effect and effect among the treated. Estimators that adjust for the propensity score in a nonparametric way, such as matching on an estimate of the propensity score, can be consistent when the estimated propensity score is not consistent for the true propensity score but converges to some other balancing score. We call this property the balancing score property, and discuss a class of estimators that have this property. We introduce a targeted minimum loss-based estimator (TMLE) for a treatment-specific mean with the balancing score property that is additionally locally efficient and doubly robust. We investigate the new estimator's performance relative to other estimators, including another TMLE, a propensity score matching estimator, an inverse probability of treatment weighted estimator, and a regression-based estimator in simulation studies.
منابع مشابه
Occupational Exposure to PM2.5 and Incidence of Ischemic Heart Disease: Longitudinal Targeted Minimum Loss-based Estimation.
BACKGROUND We investigated the incidence of ischemic heart disease (IHD) in relation to accumulated exposure to particulate matter (PM) in a cohort of aluminum workers. We adjusted for time varying confounding characteristic of the healthy worker survivor effect, using a recently introduced method for the estimation of causal target parameters. METHODS Applying longitudinal targeted minimum l...
متن کاملCollaborative targeted learning using regression shrinkage.
Causal inference practitioners are routinely presented with the challenge of model selection and, in particular, reducing the size of the covariate set with the goal of improving estimation efficiency. Collaborative targeted minimum loss-based estimation (CTMLE) is a general framework for constructing doubly robust semiparametric causal estimators that data-adaptively limit model complexity in ...
متن کاملOne-Step Targeted Minimum Loss-based Estimation Based on Universal Least Favorable One-Dimensional Submodels.
Consider a study in which one observes n independent and identically distributed random variables whose probability distribution is known to be an element of a particular statistical model, and one is concerned with estimation of a particular real valued pathwise differentiable target parameter of this data probability distribution. The targeted maximum likelihood estimator (TMLE) is an asympto...
متن کاملImproved Estimation in Rayleigh type-II Censored Data under a Bounded Loss Utilizing a Point Guess Value
‎The problem of shrinkage testimation (test-estimation) for the Rayleigh scale‎ ‎parameter θ based on censored samples under the reflected‎ ‎gamma loss function is considered‎. We obtain the minimum risk‎ ‎estimator among a subclass and compute its risk‎. ‎A shrinkage‎ ‎testimator based on acceptance or rejection of a null hypothesis&lr...
متن کاملShrinkage Preliminary Test Estimation under a Precautionary Loss Function with Applications on Records and Censored Ddata
Shrinkage preliminary test estimation in exponential distribution under a precautionary loss function is considered. The minimum risk-unbiased estimator is derived and some shrinkage preliminary test estimators are proposed. We apply our results on censored data and records. The relative efficiencies of proposed estimators with respect to the minimum ‎risk-unbiased‎&...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of causal inference
دوره 3 2 شماره
صفحات -
تاریخ انتشار 2015